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1 Introduction

A brief description of the chief terminologies is assembled in this material for
easy comprehension of many-objective optimization algorithms. For a more de-
tailed description of the concepts, the reference accompanying the terminologies
should be looked up.

The material describes the following concepts: definition of many-objective
optimization problems in Section 2, pareto-optimality and related notions in Sec-
tion 3, non-conflicting objective set in context of objective reduction in Section
4, steps of Differential Evolution for Multi-objective Optimization in Section 5,
various benchmark problems to test and compare the performance proposed al-
gorithms with existing algorithms in Section 6 and several performance metrics
to asess the results from the optimization algorithms in Section 7.

2 Many-objective Optimization Problem

The optimization problems dealing with multiple objectives form the multi-
objective optimization domain. It involes the mapping of an N -dimensional
vector X = [x1, x2, · · · , xN ]T in the decision space i.e. X ∈ S, to an M -
dimensional vector F (X) = [f1(X), f2(X), · · · , fM (X)]T in the objective space
such that searching the objective space yields a set of decision vectors which
presents the optimal trade-off in terms of all the M -objectives. An M -objective
minimization problem is mathematically formulated as in Eq. (1). It is also
essential to list all the K equality constraints (Eq. (2)) and J inequality con-
straints (Eq. (3)) while defining the optimization problem [9]. Such a problem
is called many-objective optimization (MaOO) problem when M > 3 [9].

Minimize
F (X) = {f1(X), f2(X), · · · , fM (X)} (1)

subject to constraints (if any)

H(X) = {h1(X), h2(X), · · · , hK(X)}
such that hk(X) = 0, k = 1, · · · ,K

(2)
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and

G(X) = {g1(X), g2(X), · · · , gJ(X)}
such that gj(X) ≥ 0, j = 1, · · · , J

(3)

where
xLi ≤ xi ≤ xUi , i = 1, · · · , N (4)

The common region which satisfies all the constraints (Eq. (2) and (3)) and
is bounded by the lower and upper bounds (Eq. (4)) of the decision variables,
creates the entire decision space S.

3 Concept of Pareto-Optimality

The optimal state of trade-off is called Pareto-optimality which is the state where
improvement in performance for no objective is possible without deterioration
with respect to any other objective(s) [9, 2]. Since, the objective is not scalar
valued, two solution vectors cannot be compared based on greater than or less
than relation. Pareto-dominance relation is commonly used for comparison of
two solution vectors. Given two feasible solution vectors X and Y , if Eq. (5)
follows, X Pareto-dominates Y i.e. X � Y .

∀i ∈ {1, · · · ,M}, fi(X) ≤ fi(Y ) and

∃j ∈ {1, · · · ,M}, fj(X) < fj(Y )
(5)

Pareto-Optimal Set (PS) is a set of solution vectors in S such that there
exists no other solution vector dominating any constituent of PS. The set
of objective vectors corresponding to the Pareto-Optimal Set (PS) forms the
Pareto-Front (PF ). MaOO algorithm provides an approximation in terms of
PS and PF which is given by Eq. (6) and (7), respectively.

PS = {X ∈ S | X is a Pareto-Optimal solution} (6)

PF = {y ∈ RM | y = F (X), X ∈ PS} (7)

4 Non-Conflicting Objective Set

Let X and Y be two solution vectors belonging to the decision space, then two
out of the M objectives viz. fi(.) and fj(.) are related according to Eq. (8) when
these are conflicting [2]. In case there is atleast one pair solutions (X and Y )
which are non-dominated in terms of fi(.) and fj(.), then these two objectives
are conflicting with each other. A more recent approach towards conflicting
objectives is defined in terms of the Pareto-dominance relation (�Fi) induced
by a objective set (Fi()). According to this, two sets of objectives viz. Fi(.)
and Fj(.) are said to be conflicting when �Fi

6=�Fj
and thus leading to different
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Pareto-Optimal Set. A Non-Conflicting Objective Set (F ′(.)) [3] is a subset of
the entire objective set i.e. F ′ ⊆ F , has a cardinality of 2 ≤ |F ′| ≤ |F | and
follows �F ′=�F . This indicates that excluding F −F ′ objectives will not alter
the Pareto-dominance relation induced by F . Objective reduction techniques
are employed to look for the smallest Non-Conflicting Objective Set.

∃(X,Y ) such that (fi(X) > fj(Y )) and (fi(X) < fj(Y )) (8)

5 Differential Evolution for Multi-objective Op-
timization (DEMO)

Differential Evolution for Multi-objective Optimization (DEMO) [11] has four
stages, similar to the single-objective Differential Evolution. These stages are
Initialization, Mutation, Recombination and Selection. The first three stages
are similar for both single-objective and multi-objective versions of the Differ-
ential Evolution. The fourth stage i.e., selection, is where the two approaches
differ. A brief description of the DEMO model is presented next which is called
DE/rand/1/bin.

5.1 Initialization

In this context, a population is represented by a matrix of order NP ×N imply-
ing NP candidates where each candidate is a vector with N decision variables.
For the initial population, the j-th decision variable of every i-th candidate vec-
tor is randomly initialized as per Eq. (9) where xUj and xLj are the upper and
lower bounds of the j-th decision variable, respectively.

xij,0 = xLj + rand(0, 1)×
(
xUj − xLj

)
where i = 1, · · · , NP and j = 1, · · · , N

(9)

5.2 Mutation

For every generation G and for every i-th candidate, three indices r1, r2 and
r3, are randomly chosen such that i, r1, r2 and r3 are mutually exclusive. The
corresponding candidates are used to generate the mutant vector Vi,G as shown
in Eq. (10). The parameter, FS is called the scale factor, and is a randomly
chosen real value in the range [0, 2].

Vi,G = Xr1,G + FS × (Xr2,G −Xr3,G)

where i = 1, · · · , NP
(10)

5.3 Recombination

For every next generation (G+ 1), the i-th trial vector, Ui,G+1, is generated by
picking the j-th element from i-th mutant vector or the i-th candidate vector
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depending on the crossover rate (CR) according to Eq. (11). Usually a high
value in the range [0, 1] is chosen for CR so that constituents of the mutant
vector, vij,G, have higher selection chances. The creation of the trial vector is
constrained such that a random element (Irand) of the trial vector is always
same as that from the mutant vector. This ensures that the generated trial
vector is not the same as the candidate vector.

uij,G+1 =

{
vij,G, if randij ≤ CR or j = Irand

xij,G, if randij > CR and j 6= Irand

where i = 1, · · · , NP and j = 1, · · · , N
(11)

5.4 Selection

In this stage, a choice is made between the candidate vector, Xi,G, and the trial
vector, Ui,G+1 based on Pareto-dominance relation to yield the candidate vector
for the next generation, Xi,G+1. This is shown in Eq. (12).

Xi,G+1 =

{
Xi,G, if Xi,G � Ui,G+1

Ui,G+1, otherwise

where i = 1, · · · , NP
(12)

6 Benchmark Problems

The proposed MaOO algorithm which uses objective reduction is compared with
other state-of-the-art MaOO algorithms based on the performance on a few test
problems from the DTLZ test suite [7]. The performance analysis is done on
unimodal problems like DTLZ2 and DTLZ4, and also on multimodal problems
like DTLZ1 and DTLZ3 [7, 8]. The number of objectives is varied upto 20. A
brief description of the test problem is as follows:
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6.1 DTLZ1 Problem

M-objectives of a MaOO problem of this kind is given by:

Minimize f1(X) =
1

2
x1x2 · · ·xM−1(1 + g(XM ))

Minimize f2(X) =
1

2
x1x2 · · · (1− xM−1)(1 + g(XM ))

...

Minimize fM−1(X) =
1

2
x1(1− x2)(1 + g(XM ))

Minimize fM (X) =
1

2
(1− x1)(1 + g(XM ))

subject to 0 ≤ xi ≤ 1, for i = 1, 2, · · · , N
where, g(XM ) =

100

[
|XM |+

∑
xi∈XM

{
(xi − 0.5)2 − cos(20π(xi − 0.5))

}]

Pareto-Front of this problem is given by x∗i = 0.5 where x∗i ∈ XM and∑M
i=1 fi(X) = 0.5. Hence, the Pareto-Front is linear. From [7], the suggested

cardinality of set XM is k = |XM | = 5 which also dictates the number of decision
variables i.e. N = M + k − 1 = M + 4.

6.2 DTLZ2 Problem

M-objectives of a MaOO problem of this kind is given by:

Minimize f1(X) = (1 + g(XM )) cos
(
x1
π

2

)
· · · cos

(
xM−1

π

2

)
Minimize f2(X) = (1 + g(XM )) cos

(
x1
π

2

)
· · · sin

(
xM−1

π

2

)
...

Minimize fM−1(X) = (1 + g(XM )) cos
(
x1
π

2

)
sin
(
x2
π

2

)
Minimize fM (X) = (1 + g(XM )) sin

(
x1
π

2

)
subject to 0 ≤ xi ≤ 1, for i = 1, 2, · · · , N

where, g(XM ) =
∑

xi∈XM

(xi − 0.5)2

Pareto-Front of this problem is given by x∗i = 0.5, where x∗i ∈ XM and∑M
i=1 f

2
i (X) = 1. Hence, the Pareto-Front is concave. From [7], the suggested

cardinality of set XM is k = |XM | = 10 which also dictates the number of
decision variables i.e. N = M + k − 1 = M + 9.
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6.3 DTLZ3 Problem

M-objectives of a MaOO problem of this kind is similar to DTLZ2 except the
g(.) function of DTLZ1 is considered. Pareto-Front of this problem is given by

x∗i = 0.5 where x∗i ∈ XM and
∑M
i=1 f

2
i (X) = 1. Hence, the Pareto-Front is

concave. From [7], the suggested cardinality of set XM is k = |XM | = 10 which
also dictates the number of decision variables i.e. N = M + k − 1 = M + 9.

6.4 DTLZ4 Problem

M-objectives of a MaOO problem of this kind is a similar to the DTLZ2 problem
except a meta-variable mapping (xi → xαi ) is considered. Hence, all the objec-
tives are functions of xαi instead of xi. Pareto-Front of this problem is given

by x∗i = 0.5 where x∗i ∈ XM and
∑M
i=1 f

2
i (X) = 1. Hence, the Pareto-Front is

concave. From [7], the suggested cardinality of set XM is k = |XM | = 10 which
also dictates the number of decision variables i.e. N = M + k − 1 = M + 9.
Also, [7] suggests α = 100.

7 Performance Metrics

As visualisation of M -dimensional objective space is not possible when M > 3,
the analysis of the Pareto-optimal state (more specifically, the Pareto-Front) can
only be made on the basis of performance metrics. Two major characteristics
which assess the quality of the Pareto-Front are convergence [2, 6] and diversity
[2, 1]. Convergence indicates the closeness of the approximation of the Pareto-
Front with the true scenario. On the other hand, diversity measures how well
spread is the points constituting the approximated Pareto-Front over the entire
surface. There are several metrics available in the literature for quantifying
these two features of a Pareto-Front.

This work uses Convergence Metric and Hypervolume Indicator as perfor-
mance metrics. Convergence metric provides information regarding convergence
only, whereas, hypervolume indicator provides information regarding both con-
vergence and diversity. The decision made by considering these two metrics
simultaneously can often be conflicting [10], yet this simultaneous analysis, in
presence of conflict, is helpful for pointing out whether a MaOO algorithm
has poor convergence or poor diversity which is otherwise impossible by using
either kind of metric exclusively. Other popular performance measures are gen-
erational distance (GD) [2, 5], and R2 indicator [2, 5]. But literature survey
reveals that calculation of GD is similar to convergence metric whereas R2 in-
dicator and hypervolume indicator are positively correlated [2, 4]. All these
measures either need information about true Pareto-front or are biased by the
choice of reference points.
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7.1 Convergence Metric

Convergence Metric [2, 6], indicates the convergence of the approximated Pareto-
Front, PF , to true Pareto-Front. A sampled version of the true Pareto-Front
is used for this purpose. A set of points, H, is randomly and uniformly picked
up from the true Pareto-Front. The distance, di, is obtained as the minimum
distance between the i-th point of the approximated Pareto-Front Fi ∈ PF
and all the points of H. Convergence Metric of PF (δPF ) is quantified as the
arithmetic mean of di over all the points in PF as shown in Eq. (13) where
DE(.) refers to Euclidean distance. For two Pareto-Fronts PF1 and PF2, when
δPF1

< δPF2
, PF1 � PF2.

di = min
X∈H

(DE(Fi, X)) and δPF =
1

|PF |

|PF |∑
i=1

di (13)

7.2 Hypervolume Indicator

A more robust measure is Hypervolume Indicator [2, 1] as it yields a scalar
value depicting the details of convergence as well as diversity without requiring
any knowledge of the true Pareto-Front. However, its major drawback is the
sensitivity to the location of reference point, required for its evaluation. A
hyper-rectangle is defined between the origin and the user-defined reference
point, as the diagonally opposite points, in the objective space. To represent
the hyper-rectangle, a set, H, of randomly sampled points is considered where
the sampling is done by Monte-Carlo simulation. Finally, the metric is given by
the ratio of the number of points of H which are Pareto-dominated by the points
of the approximated Pareto-Front, PF , to the total number of points in H. An
attainment function which is expressed by Eq. (14), aids in the evaluation
and results in 1 when any point ~z of H is Pareto-dominated by any point of
PF , otherwise 0. The average of the return values of the attainment function
over the number of points in H, gives the Hypervolume Indicator. Among two
Pareto-Fronts, PF1 and PF2, PF1 � PF2 when IH(PF1) > IH(PF2).

αPF (~z) =

{
1, ifPF � {z} where ~z ∈ H
0, otherwise

(14)
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